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BEWARE OF INFERENTIAL ERRORS AND LOW POWER 
WITH BAYESIAN ANALYSES: POWER ANALYSIS IS NEEDED

FOR CONFIRMATORY RESEARCH

By J. E. Kennedy

ABSTRACT. Errors in inference can occur with any hypothesis testing method, including Bayesian 
analysis. The evaluation of expected rates of inferential errors is important when planning confir-
matory research, but  inferential errors have rarely been addressed in writings on Bayesian hypoth-
esis testing. The present investigation applied classical and Bayesian hypothesis testing methods to 
binomial data with certain effects and to data simulating the null hypothesis. The Bayesian analyses 
generally had substantially lower power (probability of correctly detecting an effect), particularly 
for small effect sizes. For data with a small effect size and power of .80 for a classical analysis, the 
probability that the Bayes factor with a uniform prior correctly reached 3 or higher supporting the 
alternative model was only .173. The probability that the Bayes factor was 3 or higher incorrectly 
supporting the null model was .619. These findings verify that quantitative evaluation of expected 
inferential error rates is essential when designing confirmatory studies that use Bayesian analyses. 
The argument that biases in favor of the null model are appropriate for small effect sizes because 
of potential methodological problems is based on exploratory research and is not appropriate for 
well-designed confirmatory research that focuses on a pre-established effect size.
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Confirmatory research is the foundation for valid scientific findings. Exploratory research is usually 
the creative step that is the starting point for a line of research. However, exploratory research is prone to 
various questionable methodological practices (Ioannidis, 2012; Kennedy, 2014b; Wagenmakers, Wetzels, 
Borsboom, van der Maas, & Kevit, 2012). Confirmatory research provides the convincing evidence that 
makes science valid and self-correcting. Exploration and confirmation are both essential for science. In 
the past few decades, research in the social sciences has developed an unhealthy emphasis on exploratory 
research without adequate consideration of confirmation (Ioannidis, 2012; Wagenmakers et al., 2012). For-
tunately, a more balanced perspective has been rapidly emerging (e.g., Open Science Collaboration, 2012), 
although some psychological researchers currently continue to advocate statistical methods that blur the 
distinction between exploration and confirmation (see Kennedy, 2015). Meta-analysis of exploratory stud-
ies does not eliminate the need for well-designed confirmatory research (Kennedy, 2013a).

Confirmatory methodology for experiments includes certain key practices: prespecification of the 
statistical methods and the criteria for acceptable evidence, sample sizes based on power analysis, public 
prospective registration of experiments, experimental procedures that make intentional or unintentional 
data alterations by one person difficult, documented formal validation of software, and sharing data for 
analyses by others (Kennedy, 2013a, 2013b, 2014b; KPU Registry, 2014). These practices are based on 
established confirmatory methodology in regulated medical research and on widely recognized principles 
for good research methodology. The Koestler Parapsychology Unit study registry now provides public 
prospective registration for parapsychological experiments (KPU Registry, 2012; Watt & Kennedy, 2015).

The quantitative evaluation of potential inferential errors is a fundamental factor for planning con-
firmatory research. Errors in inference and power analysis have long been standard topics in statistical text-
books for psychologists (e.g., Hays, 1963; Keppel, 1973). Exploratory research usually focuses on either p 
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values or effect sizes, with little or no consideration of sample size, power, and inferential errors. Properly 
designed confirmatory research incorporates an explicit, balanced recognition of the interactions among 
effect size, sample size, statistical significance, and inferential errors. 

Evaluation of inferential errors and power quantifies the statistical validity of a planned hypoth-
esis test. These evaluations determine the rates of correct and incorrect inferences if the true effect size is 
a certain value, and the corresponding rates if the null hypothesis is true. The evaluations can be done for 
different effect sizes to form a curve that covers the range of effects of interest. This curve represents the 
operating characteristics for the hypothesis test. For confirmatory research, a certain minimum effect size is 
often of interest and is the focus of the evaluation. 

In well-designed confirmatory research, all analysis decisions that could affect the experimental 
results are made prior to data collection. These decisions include the specific statistical methods, criteria 
for acceptable evidence, specification of any data adjustments, and criteria for excluding any data from the 
analyses. If this information cannot be prespecified, the study is more exploratory than confirmatory. These 
methodological decisions should be publicly registered before data collection begins.

The use of Bayesian analysis is rapidly increasing in scientific research. The basic philosophy, as-
sumptions, and models for Bayesian analyses were described conceptually in a previous paper (Kennedy, 
2014a). That paper also pointed out the need for direct comparisons of Bayesian and classical methods for 
confirmatory research. 

Kruschke (2011, p. 321) defines statistical power in a Bayesian context as “[t]he probability of 
achieving the goal [of the study], given the (suspected) true state of the world.” He describes the value of 
using simulated data to evaluate power when planning research, but he does not address all types of infer-
ential errors. 

Most writings on Bayesian methods have focused on exploratory research without considering 
inferential errors or prespecifying the criteria for acceptable evidence. Few writings address confirmatory 
practices. One notable exception is the document by the U.S. Food and Drug Administration (2010) that 
has recommendations for the use of Bayesian methods when seeking approval of medical devices. The doc-
ument recommends that the experimental design and protocol include the prior probabilities and statistical 
models that will be used, the criteria for acceptable evidence, and the operating characteristics for type I 
errors and power. 

The present paper quantitatively compares the power and rates of inferential errors for classical 
and Bayesian analyses for examples of confirmatory experiments that use binomial analysis. The primary 
purpose is to investigate and to verify the need to evaluate statistical power and inferential error rates for 
Bayesian hypothesis tests.

Classical Power Analysis

The decision process for a classical hypothesis test for confirmatory research is to accept or to reject 
the null hypothesis. If the null hypothesis that the results are due to chance is rejected, the experiment is 
interpreted as providing evidence for the alternative or experimental hypothesis. Thus, the experiment has 
two possible outcomes—the null hypothesis is either accepted or rejected. Note that this decision process 
applies to well-designed confirmatory research but not to the more common exploratory analyses that are 
typically underpowered. In underpowered studies, one cannot accept or support the null hypothesis because 
nonsignificant results could be due to low power rather than to the null hypothesis being true.

Classical power analysis determines the sample size needed for an experiment to have a high prob-
ability of reaching the correct conclusion. The power analysis must consider the probability of rejecting the 
null hypothesis when the alternative hypothesis is true and the probability of accepting the null hypothesis 
when the null is true. Standard power calculations determine the sample size from four factors: (a) the 
desired power of the experiment, which is the probability that the null hypothesis will be rejected if the 
alternative or experimental hypothesis is true, (b) the effect size for the alternative hypothesis, (c) the alpha 
or significance level for the analysis, which is the probability of making a type I error that incorrectly rejects 
the null hypothesis when it is true, and (d) whether the statistical test is one- or two-sided. 
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For confirmatory research, the effect size for a power calculation is typically based on previous re-
search and/or on an effect that would be meaningfully convincing or useful. The usual recommendations are 
that the power be at least .8 for confirmatory research and preferably higher, such as .95. The alpha or sig-
nificance level is typically set at .05. However, the convention for alpha = .05 has become overly rigid and 
does not consider the nature of the phenomenon being investigated or the distinction between exploratory 
and confirmatory research. For confirmatory research on controversial effects, an alpha of .01 may be more 
appropriate. On the other hand, an alpha larger than .05 is often appropriate for small exploratory studies. 
The fixation on alpha = .05 has promoted ambiguity about whether research is exploratory or confirmatory.

When the effect size for the alternative hypothesis is estimated from previous data, the estimate 
may not be accurate. If the true effect size is greater than the estimate, the experiment will have greater 
power than the calculated power. If the true effect size is less than the estimate, the experiment will have 
lower power. Good practice is to consider the confidence interval for the effect size estimate and to use an 
effect size for the power calculation that is from the lower part of the confidence interval.

Power calculators are available online and as free programs—notably the G*Power program (Faul 
et al., 2007; Faul, Erdfelder, Lang, & Buchner, 2012). For binomial power calculations, some calculators 
use a normal approximation that is not accurate for small samples sizes. Exact calculations, such as per-
formed by the G*Power program, are preferable for small samples sizes.

Background for Bayesian Analysis

Bayesian analysis is based on the philosophical position that probability reflects uncertainty in the 
human mind rather than uncertainty in the physical world (Kennedy, 2014a). Classical analysis is based on 
models of uncertainty in the physical world. Bayesian analysis requires models for the human mind in ad-
dition to models of processes in the physical world. The analysis starts with prior probability distributions 
that model the beliefs and uncertainties in a human mind prior to the experiment. These prior probabilities 
are updated based on the results of the experiment to produce posterior probability distributions that repre-
sent what a person should believe after the experiment. Obviously, a Bayesian analysis produces different 
results for different prior probabilities or beliefs. Objective Bayesian methods attempt to minimize the sub-
jective aspects and potential biases of prior probability distributions.

The Bayes factor is a measure of the evidence from the current study and has a key role in Bayesian 
hypothesis testing. It is the ratio of the posterior probability for the experimental outcome if the outcome 
was produced by the alternative model divided by the posterior probability for the experimental outcome 
if the outcome was produced by the null model. The calculation of posterior probability for the alternative 
model requires a prior probability distribution for the effect size for the alternative model. The debates 
about Bayesian results often hinge on differing opinions about the prior probability distribution for an effect 
size. Objective Bayesian hypothesis tests typically focus on the Bayes factor.

Widely accepted conventions have not been established for the magnitude of the Bayes factor (or 
odds) that is considered acceptable evidence. Discussions of this topic usually refer to Jeffreys (1961), who 
said he used an odds of 3 the way a classical analyst uses p = .05 and an odds of 10 the way a classical an-
alyst used p = .01. Most applications of Bayesian hypothesis tests have been for exploratory research and 
have not specified a criterion for acceptable evidence.

An important feature of Bayesian analysis is that the Bayes factor can be inverted to give the 
odds that the results were produced by chance, as assumed for the null model. The criterion for acceptable 
evidence can be applied to the null model as well as to the alternative model. This can provide evidence 
directly supporting the null hypothesis.

A Bayesian hypothesis test can have three possible outcomes. The Bayes factor can exceed the 
criterion supporting the alternative model, or it can exceed the criterion supporting the null model, or it can 
fall into the intermediate zone that does not convincingly support either model. An experiment with a small 
sample size will likely have the latter result.

Proponents of Bayesian analysis have sometimes argued that type I error and power are classical 
concepts that should not be considered with Bayesian analysis. That argument is basically a philosophical 
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stance that virtually eliminates any discussion of inferential errors or accountability for an analyst. Fortu-
nately, the majority of analysts appear to recognize that inferential errors can occur with Bayesian analyses 
and should be addressed in scientific research, particularly confirmatory research. Kruschke (2011) discuss-
es statistical power from a Bayesian perspective. 

Evaluations of inferential error rates and power determine whether the methodological decisions 
about prior probabilities, specific statistical models, acceptance criteria, and sample size combine to form 
an effective process for making scientific inferences about a phenomenon. Researchers planning a con-
firmatory study must make decisions for each of these factors, and those choices affect the probability of 
making an incorrect inference. These decisions should be based on an understanding of how the different 
possible choices affect the operation of the hypothesis test. The effectiveness of a confirmatory hypothesis 
test needs to be quantitatively evaluated with all of the decisions for these factors operating together. 

Investigation Plan

A basic strategy for evaluating statistical decision-making processes is to apply the processes to 
data with known properties, as in the common practice of using simulations to evaluate and compare sta-
tistical methods. This strategy can be used to evaluate any decision-making process, including Bayesian 
hypothesis tests. For purposes of evaluation, a hypothesis test can be conceptualized as a black box that has 
an input of data and outputs a decision. The black box can be any type of hypothesis test and is evaluated 
by observing the output when the input data have known properties. The same input data can be used to 
evaluate different hypothesis testing methods.

The first step is to develop a model for generating data that simulates an effect that the experi-
ment is intended to detect, and a model that generates data for the null hypothesis. The planned statistical 
analysis is applied to data from each model, and the rates of correct and incorrect inferences determined. 
This pragmatic approach underlies traditional power analysis and indicates the statistical validity of the 
hypothesis test. An appropriate effect size or range of effect sizes for these evaluations is usually obvious 
for confirmatory research. 

These evaluations estimate the probabilities of making correct and incorrect inferences for an ex-
periment if the effect has a specific effect size. For binomial data, the effect is the value of the parameter P 
in a binomial model. Most binomial hypothesis tests assume that the effect being investigated has a fixed 
but unknown value of P. As discussed in the previous paper (Kennedy, 2014a), Bayesian prior probability 
distributions represent the uncertainties in the beliefs in a human mind, not variability or random effects in 
the phenomenon being investigated. The prior probabilities are part of the hypothesis test, not part of the 
models for generating data to evaluate the hypothesis test. The data for evaluating the hypothesis-testing 
methods simulate conditions in the external world. Thus, a fixed value of P is used to simulate a phenome-
non for a typical binomial hypothesis test. 

In the comparisons described below, the sample sizes for an experiment were determined using 
classical power analysis, and then the corresponding probabilities of correct and incorrect inferences for a 
Bayesian analysis were determined for that sample size and effect size. A Bayes factor of 3 was set as the 
criterion for significant or acceptable evidence for the alternative model or for the null model. The number 
of hits for obtaining a Bayes factor of 3 was found, and the probabilities of reaching that number were de-
termined for both the null model and the modeled effect. 

As noted above, a Bayesian hypothesis test has three possible outcomes. The evaluations here pro-
vide the probability of each possible outcome if the null hypothesis is true and if the modeled alternative 
hypothesis is true. 

The cases described below are for studies with P = .5 for the null hypothesis, as is typical for para-
psychological experiments with random event generators (REGs). Two different effect sizes were investi-
gated as alternative models, P = .53 and P = .503. Both are within the range of effects reported as evidence 
in parapsychological experiments. For each effect size, the sample size was determined for three different 
sets of parameters for the classical power analysis: (a) alpha = .05 and power = .80, (b) alpha = .05 and 
power = .95, (c) alpha = .01 and power = .95. These options cover the range of power analysis that would 
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reasonably be used in designing a confirmatory experiment. The classical sample sizes were determined 
using the G*power program (Faul et al., 2012).

The comparisons were based on two-sided tests. This was done because two-sided tests are often 
recommended in general and are specifically appropriate for parapsychology given the established occur-
rence of psi missing. Psi missing has been prominent in studies with REGs. Also, two-sided analyses are 
the only option for the online binomial Bayes factor calculator that was used. 

The Bayes factor analysis used the online binomial Bayes factor calculator provided by Rouder 
(2012). As is common for Bayesian binomial analysis, this calculator has a beta distribution for the prior 
probability and requires that the two beta parameters be specified. The parameters beta(1,1) were used for 
one analysis. These provide a uniform prior distribution that is frequently recommended as an objective 
Bayesian prior and is based on the assumption that any hit rate is equally possible between 0% and 100%. 
However, this “objective” prior distribution does not reasonably represent the beliefs of either proponents 
or skeptics of psi. A second analysis was done with parameters beta(22,22). These parameters represent 
a belief that effects between .4 and .6 are most likely. This distribution is symmetric and has 82% of the 
distribution between .4 and .6. The beta(22,22) prior is more representative of beliefs based on previous 
research than is the beta(1,1) prior. However, the selection of this prior distribution was somewhat arbitrary, 
and arguments can be made that a different prior distribution is preferable. Differing opinions about prior 
probability is the nature of Bayesian analysis. The purpose here is to investigate the value of power analysis 
and inferential error evaluations for Bayesian hypothesis tests. Identification and justification of an optimal 
prior distribution for a particular situation is a different task, and it may be affected by the findings from 
the present investigation. Online graphs and tables of the beta distribution (e.g., Casio Computer Company, 
2014) can be used to display and explore the different options. 

Once the number of hits for a Bayes factor of 3 was determined for the different sample sizes and 
beta parameters, the Stat Trek (2014) online binomial calculator was used to calculate the probabilities 
for the different possible outcomes under the null and alternative models. The binomial calculator gives 
cumulative probabilities that are equivalent to those obtained from running an extremely large number of 
simulations. The Appendix provides more detailed information about this process and gives the cutoff val-
ues that were used. Because the distributions investigated here are symmetric, the evaluations for a positive 
deviation give the same results as those for a negative deviation. For example, the evaluation of P = .53 
gives the same inferential error rates and power as an evaluation of P = .47.

The Jeffreys prior that uses beta(.5,.5) is sometimes recommended as an objective prior and was 
also initially examined. This is a U-shaped distribution that is higher on the tails near 0 and 1 and thus is 
even less realistic than the uniform distribution. When it became apparent that this prior gives lower power 
than the uniform distribution, further consideration of it was rejected.

Results

The results are shown in Tables 1 and 2 for the two different effect sizes. The null model is desig-
nated as H0 in the tables and the alternative model as H1. The column for “Probability BF(H1) ≥ 3” under 
“If H1 is True” gives the basic power for the Bayesian analysis, that is, the probability of obtaining a Bayes 
factor significantly (≥ 3) supporting the alternative model if the alternative model is true. The column for 
“Probability BF(H1) ≥ 3” under “If H0 is True” gives the alpha level or probability of type I error for the 
Bayesian analysis, that is, the probability of obtaining a Bayes factor significantly in favor of the alternative 
model if the null model is true. The column for “Probability BF(H0) ≥ 3” under “If H1 is True” is important 
because it gives the probability of obtaining a Bayes factor significantly in favor of the null model if the 
alternative model is actually true.

The Bayesian analyses generally have substantially lower power than the classical analyses, par-
ticularly for the uniform prior distribution. As shown in Table 1 for the hit rate of 53%, when the classical 
analysis has a power of .80, the power for the Bayes factor with a uniform prior is .393, and the probability 
of obtaining a Bayes factor that incorrectly supports the null model is .294. The probability of making a type 
I error with the uniform prior is .002 in all three cases and, thus, is much lower than the classical alpha level. 
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The power increases and error rates decrease for the beta(22,22) prior and as sample size increases. For the 
case with classical power of .95 and alpha of .01, the Bayesian power and probability of type I error for the 
beta(22,22) prior are .944 and .008 respectively, which are very close to the classical values.

The lower power and higher associated errors are dramatic for the smaller hit rate of 50.30%. As 
shown in Table 2, when the classical analysis has a power of .80, the power for the Bayes factor with a 
uniform prior is only .173, and the probability of obtaining a Bayes factor that incorrectly supports the null 
model is .619. With the beta(22,22) prior, the probability of the Bayes factor incorrectly supporting the null 
hypothesis is still greater than the probability of it correctly supporting the alternative model (.386 versus 
.318). For all the cases in Table 2, the Bayesian analysis has substantially less power, and in most of them it 
is substantially biased in favor of the null model. The probability of making a type I error is essentially zero.

Table 1
Inferential Errors and Power for Classical and Bayesian Binomial Analyses for

H1 Effect Size = 53.00% and H0 (Chance) = 50.00% 

Classical Power Analysis Analysis for Bayes Factor (using N from the classical power analysis) 

Alpha Power N Prior Beta 
Parameters

If H1 is True (P = .53) If H0 is True (P = .50)

Probability
BF(H1) ≥ 3

Probability  
BF(H0) ≥ 3

Probability 
BF < 3

Probability
BF(H1) ≥ 3

Probability  
BF(H0) ≥ 3

Probability 
BF < 3

.05 .80 2,189 1,1 .393 .294 .313 .002 .976 .022

22,22 .629 .069 .302 .014 .814 .172

.05 .95 3,613 1,1 .672 .106 .222 .002 .982 .016

22,22 .844 .017 .139 .010 .866 .124

.01 .95 4,963 1,1 .846 .035 .119 .002 .984 .014

22,22 .944 .004 .052 .008 .888 .104

BF(H1) ≥ 3 indicates that the Bayes factor is 3 or greater, supporting the alternative model.
BF(H0) ≥ 3 indicates that the Bayes factor is 3 or greater, supporting the null model.
BF < 3 indicates that the Bayes factor is less than 3 for both the alternative and null models.

Table 2
Inferential Errors and Power for Classical and Bayesian Binomial Analyses for

H1 Effect Size = 50.30% and H0 (Chance) = 50.00% 

Classical Power Analysis Analysis for Bayes Factor (using N from the classical power analysis)

Alpha Power N Prior Beta 
Parameters

If H1 is True (P = .503) If H0 is True (P = .500)

Probability
BF(H1) ≥ 3

Probability  
BF(H0) ≥ 3

Probability 
BF < 3

Probability
BF(H1) ≥ 3

Probability  
BF(H0) ≥ 3

Probability 
BF < 3

.05 .80 218,187 1,1 .173 .619 .208 .000 .998 .002

22,22 .318 .386 .296 .002 .988 .010

.05 .95 361,059 1,1 .417 .337 .246 .000 .998 .002

22,22 .601 .160 .239 .000 .992 .008

.01 .95 494,843 1,1 .643 .162 .195 .000 .998 .002

22,22 .795 .061 .144 .000 .992 .008

BF(H1) ≥ 3 indicates that the Bayes factor is 3 or greater, supporting the alternative model.
BF(H0) ≥ 3 indicates that the Bayes factor is 3 or greater, supporting the null model.
BF < 3 indicates that the Bayes factor is less than 3 for both the alternative and null models.
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Discussion and Conclusions

These findings verify that quantitative evaluation of inferential errors is needed for confirmatory 
research with Bayesian analysis, as well as for confirmatory research with classical analysis. The investiga-
tions found that the Bayesian analyses of the binomial data tended to have lower power and higher rates of 
associated inferential error than the classical hypothesis tests. For small effect sizes, the Bayesian analyses 
were strongly biased toward supporting the null model when the alternative model was true. 

The analyses here should not be taken as evidence that classical hypothesis tests are generally 
superior to Bayesian methods, or as recommendations about prior probabilities or the magnitude that a 
Bayes factor must reach to provide acceptable evidence. Rather, my expectation is that useful prior prob-
abilities and criteria for acceptable evidence can be found for Bayesian analyses if inferential errors and 
power are evaluated. The primary conclusion here is that these evaluations are essential for confirmatory 
research.

Small Effects

The differences in conclusions between Bayesian and classical analyses for small effects are well 
known among statisticians and are a manifestation of the Jeffreys-Lindley paradox. Diffuse prior proba-
bility distributions, such as a uniform distribution, enhance this paradox. Some proponents of Bayesian 
methods have argued that these differences between classical and Bayesian results indicate that classical 
methods are flawed (e.g., Jefferys, 1990; Wagenmakers & Grünwald, 2005). This argument appears to be 
based on the assumption that Bayesian methods are theoretically optimal and should be the standard for 
evaluating other statistical methods. However, a more common and less disputable strategy for evaluating 
statistical methods is to use data that simulate effects of interest. These more empirical evaluations are less 
susceptible to overly optimistic theoretical ideas. The evaluations here show that Bayesian analyses can be 
strongly biased in favor of the null model when the alternative model is actually true. Similar conclusions 
have been reached by others (e.g., Bem, Utts, & Johnson, 2011; Dobyns, 1992).

Some defenders of Bayesian methods attempt to put a positive spin on the bias against small effects 
by claiming that small effects are usually due to methodological artifacts or to slight meaningless effects 
for the phenomenon being investigated (e.g., Jefferys, 1990). That argument may have some plausibility 
for exploratory research, but it is not appropriate for well-designed confirmatory research that is attempting 
to verify previous findings. The argument is basically a speculation that is impervious to empirical data. 
Larger sample sizes cannot overcome these a priori assumptions that the effects are meaningless. The result 
is that small effects could be largely excluded from scientific findings with Bayesian analysis—a position 
that is inconsistent with the basic principles of empirical scientific research. 

A more appropriate strategy for reaching valid scientific conclusions is to conduct well-designed 
confirmatory research rather than use biased statistical methods. Parapsychological research is just begin-
ning to implement this type of confirmatory methodology. 

Counterintuitive, Arbitrary Priors

The prior probabilities in Bayesian hypothesis testing can have counterintuitive consequences. For 
example, a uniform prior probability for effect size appears on the surface to represent a very open-minded 
prior belief that is typically described as “objective.” However, a diffuse prior like this makes any specific 
effect size have a relatively low probability—including the specific effect size that is the experimental out-
come. A low prior probability for the experimental outcome makes the Bayes factor favor the null hypoth-
esis. In effect, the power of the hypothesis test is spread over an unrealistic “objective” range that results 
in the analysis favoring the null hypothesis. On the other hand, a narrow prior probability distribution can 
have a much higher or much lower probability for a particular effect size, depending on the details of the 
distribution and the specific effect. 
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The evaluation of inferential errors using simulated data for an effect of interest is very useful for 
revealing counterintuitive biases for a planned Bayesian hypothesis test. The Jeffreys-Lindley paradox is 
another manifestation of counterintuitive effects that can bias a hypothesis test.

In practice, the selection of a prior probability distribution is often substantially arbitrary. A wide 
range of prior probability distributions from diffuse to narrow usually can be justified as reasonably plau-
sible. The beta(22,22) prior distribution was somewhat arbitrarily selected for the present investigation and 
will likely be considered inappropriate by some researchers. I cannot defend it as optimal or as specifically 
representing my personal beliefs. I can only say that it appears to me to be within the wide range of plau-
sible priors.

Inferential errors and power can be useful factors in selecting prior probabilities for confirmatory 
research. Most writings on Bayesian analysis focus on the exploratory stage of research and recommend 
retrospective sensitivity analysis of prior probabilities. However, for confirmatory research, the sensitivity 
analyses need to be done at the planning stage and the selected priors included in the preregistered study 
information. 

If an analysis has a high probability of inferential errors for an effect size that is of primary interest 
to the experimenter, the design and/or analysis need to be modified. For confirmatory research, this situa-
tion needs to be discovered at the planning stage rather than through retrospective sensitivity analysis. An 
efficient strategy may be to find a prior probability distribution that gives useful rates of inferential errors, 
and then consider whether the selected prior is within the range of plausible priors.

The potential for inferential errors also affects the interpretation of the final experimental results. 
For a classical analysis with low power, a nonsignificant result is ambiguous because the result could be due 
to low power or to the experimental hypothesis being false. A more fundamental point is that the absence of 
a careful power analysis typically indicates exploratory methodology that is prone to various questionable 
practices that can be difficult to detect from the final report. This is true whether or not the experimenter 
describes the research as exploratory. Similarly, for a Bayesian analysis that has a high probability of incor-
rectly supporting the null model when the alternative model is true, an experimental outcome supporting the 
null model is ambiguous, and the experiment is likely exploratory and prone to other questionable method-
ological practices that could be difficult to detect from the final report.

Some Bayesian analysts (e.g., Kruschke, 2011) consider the Bayes factor to be an undesirable hy-
pothesis-testing method because of the high potential for bias. These analysts propose alternative Bayesian 
methods. If the proposed alternative methods are used for confirmatory research, prespecification of the 
criteria for acceptable evidence and evaluation of inferential errors and power are needed.

Limitations of Posterior Probabilities
 

An often underappreciated limitation of Bayesian analysis is that the mathematical functions rep-
resenting the posterior probabilities do not represent the multifactorial contingencies of actual scientific 
beliefs. The validity and meaning of the Bayes factor (or p value) for an experiment depend on the method-
ology that was used. The statistical evidence from an experiment is contingent upon good methodology, but 
key methodological factors (e.g., preregistration of the planned analysis, software validation, and measures 
to prevent fraud) are not considered in the statistical models. This larger context that is not represented in 
the mathematical models can be decisive when evaluating the evidence from an experiment. Attempts to 
quantitatively adjust posterior probabilities and subsequent prior probabilities for these methodological 
factors are inevitably subjective and imprecise.

Parapsychological research with electronic REGs is a clear example of the importance of the larger 
context for research. Meta-analyses of experiments with REGs have consistently found that smaller studies 
have larger effects (Kennedy, 2013a). This pattern is a recognized symptom of methodological bias, but 
could also be a property of psi (Kennedy, 2013a). Either way, the data are not consistent with a straightfor-
ward statistical analysis. The evidence from parapsychological experiments with REGs depends more on 
a person’s opinion about this property of the results than on the specific p values or Bayes factors that are 
produced in an analysis. 
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Reasonable expectations for convincing experimental evidence are: (a) confirmatory methodology 
as described in the introduction, and (b) reliable confirmatory results that have properties consistent with 
the assumptions for the statistical analyses. Parapsychological research and most psychological research 
have not yet met these standards (Kennedy, 2013a, 2014b; Wagenmakers et al., 2012). 

Overall Summary

The key points in this paper can be summarized as:

1.	 Quantitative evaluation of expected inferential errors and power is essential for planning statistical-
ly-based confirmatory research, including research with Bayesian analyses. These evaluations can 
be done by determining the probability of correct and incorrect inferences for the planned analysis 
when applied to data with and without the effect that the study is designed to detect. These evalua-
tions are relatively easy for binomial analyses. 

2.	 Much work remains to be done to develop reasonably unbiased Bayesian methods. The results of 
Bayesian hypothesis tests currently represent explorations of the properties of poorly understood 
and somewhat arbitrarily selected mathematical functions more than beliefs that a person has or 
should have. Better understanding of errors in inference will contribute significantly to the devel-
opment of Bayesian methods.

The first conclusion above is consistent with the U.S. Food and Drug Administration (2010) rec-
ommendations on the use of Bayesian methods when seeking approval of medical devices. These recom-
mendations recognize the current uncertainties and limitations of Bayesian analyses and are appropriate for 
confirmatory research that is expected to receive critical scrutiny (Kennedy, 2014a). 

Exploratory analyses present different challenges than those discussed here. One problem is that 
researchers often report exploratory analyses  only if the outcomes are suggestive of an effect. This intro-
duces a fundamental bias for false-positive errors and shows the need for confirmatory research. Attempts 
to provide convincing evidence from exploratory research by altering the type I error rates do not eliminate 
the bias from selective reporting and do not eliminate the need for confirmatory research. The debates about 
Bayesian versus classical statistics have often implicitly focused on attempts to develop convincing results 
from exploratory research. Psychologists and parapsychologists appear to be reaching the same conclusion 
as has previously been reached for regulated medical research: well-designed confirmatory research is re-
quired for convincing scientific evidence.
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Appendix

The online binomial Bayes factor calculator provided by Jeff Rouder (2012) can be used for 
two-sided binomial analyses. This calculator provides the Bayes factor that has the posterior probability 
of the experimental outcome with the null model divided by the posterior probability of the experimental 
outcome with the alternative model. For P = .5, this Bayes factor as a function of the number of hits is a 
symmetric bell-shaped curve. If a Bayes factor of 3 is considered acceptable evidence, outcomes in the mid-
dle of the curve with Bayes factors greater than 3 are evidence supporting the null hypothesis. The points on 
each side where the Bayes factor just reaches 3 are the cutoff values or critical values for supporting the null 
hypothesis. Bayes factors of .333 or less on the tails support the alternative hypothesis. If the Bayes factor 
is inverted to give the posterior probability with the alternative model divided by the posterior probability 
with the null model, these tail values are 3 or greater supporting the alternative hypothesis. The points on 
each side where the Bayes factor just reaches .333 or less are the cutoff values or criteria for supporting the 
alternative hypothesis. Outcomes with a Bayes factor that falls between 3 and .333 do not clearly support 
either the alternative or null hypothesis. For a given number of trials, prior beta parameters, and P for the 
null model, the cutoff values can easily be found by trying different numbers of hits until the Bayes factor 
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just reaches 3 or .333. 
Once these cutoff points for the Bayes factor have been determined, the power and probability of 

errors in inference can be found using standard binomial calculators. The Stat Trek (2014) website provides 
a useful online binomial calculator that uses exact methods and normal approximations as appropriate. 

Classical power can be calculated with a binomial calculator as the probability of reaching the 
cutoff for significance when P in the binomial model is the hit rate (effect size) assumed for the alternative 
hypothesis in the power evaluation. Likewise, the alpha level or probability of type I error can be calculated 
with a binomial calculator as the probability of reaching the cutoff for significance when P is the hit rate 
for the null hypothesis. 

These same types of calculations can be done using the cutoff criteria for the Bayes factor. The use 
of the binomial calculator is straightforward once the Bayes factor cutoff values have been found. For the 
cutoff for the null hypothesis (Rouder’s Bayes factor = 3), the relevant cumulative probability is less than or 
equal to the cutoff. For the cutoff for the alternative hypothesis (Rouder’s Bayes factor = .333), the relevant 
cumulative probability is greater than or equal to the cutoff. The only complication is in handling both sides 
or tails. For the examples discussed here, the probability of outcomes on the negative side was negligible 
when the alternative model was applied. Both sides need to be considered when the null model is applied.

The Bayes factor cutoff values for the analyses in Tables 1 and 2 are listed below.

N
Prior Beta 
Parameters

N Hits for 
BF(H1) = 3

N Hits for 
BF(H0) = 3

     2,189 1,1      1,167      1,147
22,22      1,153      1,125

     3,613 1,1      1,902      1,877
22,22      1,885      1,851

     4,963 1,1      2,595      2,566
22,22      2,575      2,537

218,187 1,1 109,969 109,818
22,22 109,859 109,680

361,059 1,1 181,676 181,486
22,22 181,536 181,314

494,843 1,1 248,778 248,559
22,22 248,617 248,361
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ATTENTION AUX ERREURS INFÉRENTIELLES ET AUX FAIBLES PUISSANCES 
DANS LES ANALYSES BAYESIENNES : L’ANALYSE DE PUISSANCE EST NÉCESSAIRE 
POUR LA RECHERCHE CONFIRMATOIRE

RÉSUMÉ : Les erreurs dans les inférences peuvent survenir avec n’importe quelle méthode pour tester des 
hypothèses, dont l’analyse bayésienne. L’évaluation des taux attendus d’erreurs inférentielles est importante 
lorsque l’on prévoit des recherches confirmatoires, mais les erreurs inférentielles ont rarement été discutées 
dans la littérature sur l’analyse bayésienne. La présente étude applique les méthodes de test classique et 
bayésienne à des données binomiales avec certains effets et à des données simulant l’hypothèse nulle. Les 
analyses bayésiennes ont généralement une puissance substantiellement plus faible (probabilité de détecter 
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correctement un effet), particulièrement avec des petites tailles d’effet. Pour des données avec une petite 
taille d’effet et une puissance de 0,80 pour une analyse classique, la probabilité que le facteur de Bayes avec 
une probabilité a priori uniforme atteignant 3 ou plus soit correctement en faveur du modèle alternatif fut 
seulement de 0,173. La probabilité que le facteur de Bayes fut de 3 ou plus et soutienne incorrectement le 
modèle nul était de 0,619. Ces données vérifient que l’évaluation quantitative des taux d’erreur inférentielle 
attendus est essentielle lorsque l’on conçoit des études confirmatoires qui utilisent des analyses bayésiennes. 
L’argument selon lequel les biais en faveur du modèle nul sont appropriés pour des petites tailles d’effet du 
fait des potentiels problèmes méthodologiques est basé sur la recherche exploratoire et n’est pas appropriée 
pour des recherches confirmatoires bien conçues qui se concentrent sur une taille d’effet préétablie.

German

VORSICHT VOR INFERENZFEHLERN UND GERINGER TESTSTÄRKE BEI BAYESSCHEN ANAL-
YSEN: EINE ANALYSE DER TESTSTÄRKE WIRD BEI BESTÄTIGUNGSFORSCHUNG BENÖTIGT

ZUSAMMENFASSUNG: Fehler bei Schlussfolgerungen können bei jeder hypothesenüberprüfenden 
Methode auftreten, auch bei der Bayesschen Analyse. Die Abschätzung der zu erwartenden Anzahl von 
Inferenzfehlern ist wichtig, wenn eine Bestätigungsforschung geplant wird, aber Inferenzfehler wurden 
nur selten in der Literatur über Bayessche Hypothesenüberprüfung diskutiert. In der vorliegenden Unter-
suchung wurden die klassische und die Bayessche Methode zur Hypothesenüberprüfung auf binomiale 
Daten bei bestimmten Effekten und auf Daten zur Simulation der Nullhypothese angewandt. Die Bayess-
chen Analysen weisen im allgemeinen eine deutlich geringere Teststärke auf (die Wahrscheinlichkeit, einen 
wahren Effekt zu erkennen), besonders bei kleineren Teststärken. Bei auf klassische Weise analysierten 
Daten mit einer geringen Effektstärke und einer Teststärke von .80 beträgt die Wahrscheinlichkeit, dass der 
Bayes-Faktor mit einem gleichförmigen Prior von 3 oder höher das alternative Modell zu Recht bestätigt, 
nur .173. Die Wahrscheinlichkeit, dass der Bayes-Faktor von 3 oder höher das Nullmodell fälschlicher-
weise bestätigt, beträgt .619.  Diese Ergebnisse belegen, wie wichtig die quantitative Abschätzung erwar-
teter Inferenzfehler ist, wenn man Bestätigungsstudien unter Verwendung von Bayesschen Analysen plant. 
Das Argument, dass Abweichungen zugunsten des Nullmodells für geringe Effektgrössen angemessen sind 
wegen potentieller methodologischer Probleme, beruht auf exploratorischer Forschung und ist für eine 
wohlüberlegte Bestätigungsforschung unangemessen, die auf eine vorher festgelegte Effektstärke abzielt.

Spanish

CUIDADO CON LOS ERRORES INFERENCIALES Y BAJO PODER EN ANÁLISIS BAYESIANOS: 
SE NECESITA UN ANÁLISIS DE PODER PARA LA INVESTIGACIÓN CONFIRMATORIA

RESUMEN: Los errores en la inferencia pueden ocurrir con cualquier método de prueba de hipótesis, in-
cluyendo al análisis Bayesiano. La evaluación de las tasas esperadas de errores inferenciales es importante 
en la planificación de la investigación confirmatoria, pero  rara vez se han abordado los errores inferenciales 
en los escritos sobre la prueba de hipótesis Bayesiana. Apliqué métodos de prueba de hipótesis clásicos y 
Bayesianos a datos binomiales con efectos conocido y datos que simulaban la hipótesis nula. El análisis 
Bayesiano generalmente tuvo un poder sustancialmente menor (la probabilidad de detectar correctamente 
un efecto), en particular para los efectos pequeños. Para los datos con un efecto pequeño y poder de 0.80 
en un análisis clásico, la probabilidad de que el factor de Bayes con un cálculo previo uniforme de 3 o más 
apoyando al modelo alternativo fue de sólo 0.173. La probabilidad de que el factor de Bayes fuera 3 o más 
apoyando incorrectamente al modelo nulo fue 0.619. Estos resultados verifican que la evaluación cuan-
titativa de los índices de error inferencial esperados es esencial en el diseño de estudios de confirmación 
que utilizan análisis Bayesianos. El argumento de que los sesgos a favor del modelo nulo son apropiados 
para los efectos pequeños por posibles problemas metodológicos se basa en la investigación exploratoria 
y no es apropiado para la investigación confirmatoria bien diseñada que se centra en un efecto de tamaño 
preestablecido.


